Enrollment No:	Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Numerical Methods

Subject Code: 4SC04MTE1/4SC04NUM1 Branch: B.Sc. (Mathematics, Physics)

Semester:4 Date:03/05/2018 Time:10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:	(14)
--------------------------------------	------

- Initial approximation of $x^3 x 2 = 0$ can be chosen from _____ (01)
 - [0,1] (1,2)
- (3) (4) [1,2]
- For Simpson's $\frac{1^{rd}}{3}$ rule, n is required multiple of ______. (01)(1) 3
 - (3) (4) 5
- To derive Trapezoidal rule formula is used. (01)
 - Newton's Backward (2) Gauss Forward (1)
 - (3) Newton's Forward (4) Gauss Backward
- Which of the following method can be used to evaluate a numerical integral (01)
 - Picard's Method Runge -Kutta Method (1) (2)
 - Euler's Method None of these (3) (4)
- The order of convergence in Newton's Raphson method is (01)
 - 3 (1) 2 (2)
- (3) 0 (4) None of these **Match the following:**

(1)
$$A2 - B3 - C1$$
 (2) $A1 - B3 - C2$ (3) $A2 - B1 - C3$ (4) None of these

Newton's iterative formula to find the value of \sqrt{N} is (01)

(1)
$$x_{n+1} = \left(x_n + \frac{N}{x_n}\right)$$
 (2) $x_{n+1} = \frac{1}{2}\left(x_n + \frac{N}{x_n}\right)$ (3) $x_{n+1} = \frac{1}{3}\left(2x_n + \frac{N}{x_n^2}\right)$ (4) $x_{n+1} = \frac{1}{2}\left(x_n - \frac{N}{x_n}\right)$

Write Runge-Kutta second order method. (01)

(01)

		$f(x) = \begin{cases} 0.05 & 1 \\ 1 & 0.8 & 0.5 \end{cases}$	
		Then using Trapezoidal rule, find $\int_0^1 f(x) dx$.	
	j)	The number of strips required in Weddle's rule is	(01)
	k)	Find an interval containing an initial approximation $x^2 - 10x + 7 = 0$.	(01)
	l)	Write formula of Euler's modified method.	(01)
	m)	Newton-Raphson method is applicable to the solution of both algebraic and	(01)
	,	transcendental equations. Determine whether the statement is True or False.	(0.1)
	n)	Predictor-corrector methods is a self-starting method. Determine whether the statement is True or False.	(01)
Attempt	any	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	a)	Calculate the value of $\int_0^1 \frac{x}{1+x} dx$ correct up to three significant figures, taking six	(07)
		intervals by using (i) Trapezoidal rule, (ii) Simpson's $\frac{1}{3}^{rd}$ rule.	
	b)	The function $f(x)$ is tabulated below, for different values of x	(07)
		x 0 5 10 15 20 5 1,5720 1,5720 1,5020 1,5001 1,5001 1,5000	
		f(x) 1.5708 1.5738 1.5828 1.5981 1.6200	
0-3		Compute first and second derivatives of $f(x)$ at $x = 0$ and $x = 20$. Attempt all questions	(14)
Q-3	a)	Derive differentiation formulae based on Newton's forward interpolation formula.	(07)
	b)	State and prove Euler-Maclaurin Sum Formula.	(07)
Q-4	ŕ	Attempt all questions	(14)
	a)	Find a positive root of $x + \ln x - 2 = 0$ by Newton-Raphson method correct to	(05)
		two significant figure.	(05)
	b)	Compute $y(2)$, if $y(x)$ satisfies the equation $\frac{dy}{dx} = \frac{1}{2}(x+y)$ given $y(0) = 2$,	(05)
		y(0.5) = 2.636, $y(1.0) = 3.595$ and $y(1.5) = 4.968$, using Milne's method.	
	c)	Find a root of the equation $x^x + 2x - 6 = 0$, by method of bisection, correct to two	(04)
0.5		decimal places.	(14)
Q-5	a)	Attempt all questions Let $x = \xi$ be a root of $f(x) = 0$ and let I be an interval containing the point $x = \xi$.	(14) (05)
	u)	Let $\phi(x)$ and $\phi'(x)$ be continuous in <i>I</i> where $\phi(x)$ is defined by the equation	(05)
		$x = \phi(x)$ which is equivalent to $f(x) = 0$. Then prove that if $ \phi'(x) < 1$ for all	
		x in I , the sequence of approximations $x_0, x_1, x_2,, x_n$ defined by $x_n = \phi(x_{n-1})$	
		converges to the ξ , provided that the initial approximation x_0 is chosen in I .	
	b)	Use Taylor's series method to compute $y(1.1)$, correct to five decimal places,	(05)
		when $y(x)$ satisfies the equation $\frac{dy}{dx} = xy$ with $y(1.0) = 2$.	
	c)	Find $y(0.10)$ and $y(0.15)$ by Euler's method, from the differential equation $\frac{dy}{dx} = x^2 + y^2$	(04)
0.6		, $y(0) = 0$ correct up to four decimal places, taking step length $h = 0.5$.	(1.4)
Q-6	o)	Attempt all questions Using Paralla Falsi method, find a root of x sin x = 1, correct to three decimal.	(14) (05)
	a)	Using Regula-Falsi method, find a root of $x \sin x = 1$ correct to three decimal places.	(03)
	b)	Derive differentiation formula based on Newton's divided difference formula.	(05)
		Page 2 o	of 3

i) If f(x) is given by

0

0.5

(01)

Q-/		Attempt an questions	(14)
	a)	Evaluate $\int_{0.1}^{0.7} (e^x + 2x) dx$, by Simpson's $\frac{3^{th}}{8}$ rule, taking $h = 0.1$, correct up to five	(05)
		decimal places.	
	b)	Compute $y(0.2)$, by Runge-Kutta fouth order method correct up to four decimal	(05)
		places, from the equation $\frac{dy}{dx} = x + y$, $y(0) = 1$, taking $h = 0.2$.	
	c)	Describe Picard's Method for first order ordinary differential equation.	(04)
Q-8		Attempt all questions	(14)

c) Evaluate: $\int_0^1 \frac{dx}{1+x^2}$ by using Weddle's rule with $h = \frac{1}{6}$.

Attempt all questions

Q-7

- a) Obtain Picard's second approximate solution of the initial value problem (05) $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0.$ **b)** Find the root of $x^2 + \ln x - 2 = 0$, which lies between 1 and 2 by iteration method
- (05)correct up to four decimal places.
- Apply Euler-Maclaurin sum formula to find the sum $1^3 + 2^3 + 3^3 + \cdots + n^3$. (04)

(04)

(14)